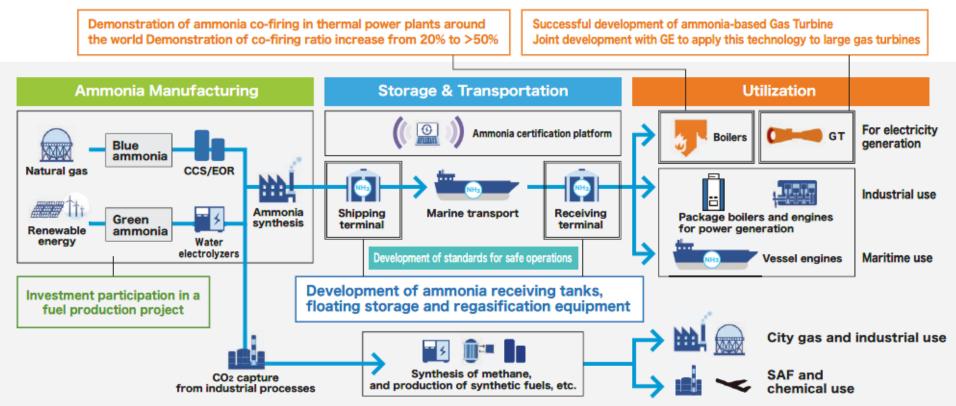


IHI's Solution to Achieve Carbon Neutrality

September 2nd, 2024

S. Takano,


Carbon Solution SBU, Resources, Energy and Environment Business Area,

IHI Corporation

Medium-term Management Plan

- Building it into a business that will be main pillar.
- We will work to create and improve our entire value chain. This includes power generation equipment such as Gas Turbine that utilizes world-leading ammonia combustion technology, as well as our storage and receiving terminals with top-tier performance.
- While investigating investment in fuel manufacturing projects, we will utilize our engineering capabilities to build a new business model.

1

Activities for Establishment of Ammonia Value Chain

 \sim Carbon neutrality through fuel conversion \sim

- ✓ Green ammonia production projects
- ✓ Ammonia utilization technologies
- ✓ Activities for thermal power
- ✓ Biomass power

Our Mission

IHI's mission is to provide **advanced ammonia utilization technologies** and **a reasonable price of ammonia** to partners who aim to achieve carbon neutrality.

IHI's wide range of **development activities to build an ammonia value chain include -**

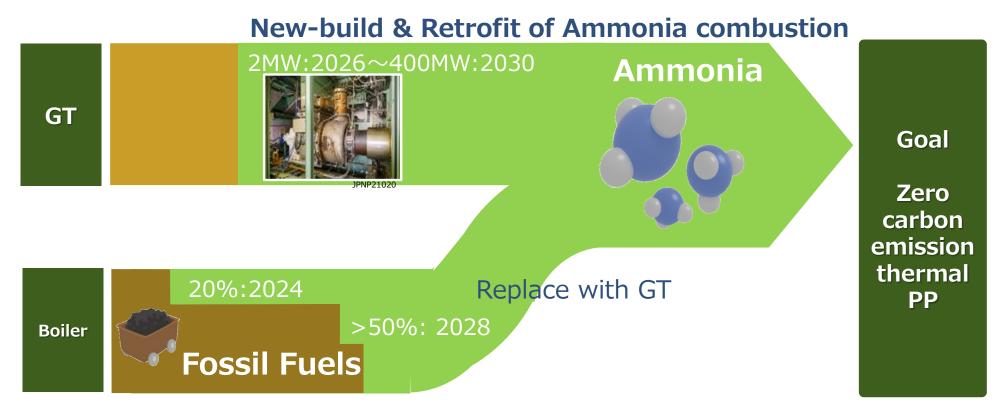
- (1) Ammonia Production; NH3 Direct Synthesis
- 2 Transportation and Storage; Large Capacity Tanks
- ③ Utilization; Boilers, GTs, Reciprocating Engines, Industrial Furnaces
- ④ Standardization for Safe Use

Copyright © 2024 IHI Corporation All Rights Reserved.

Clean Ammonia Production Projects Over the World

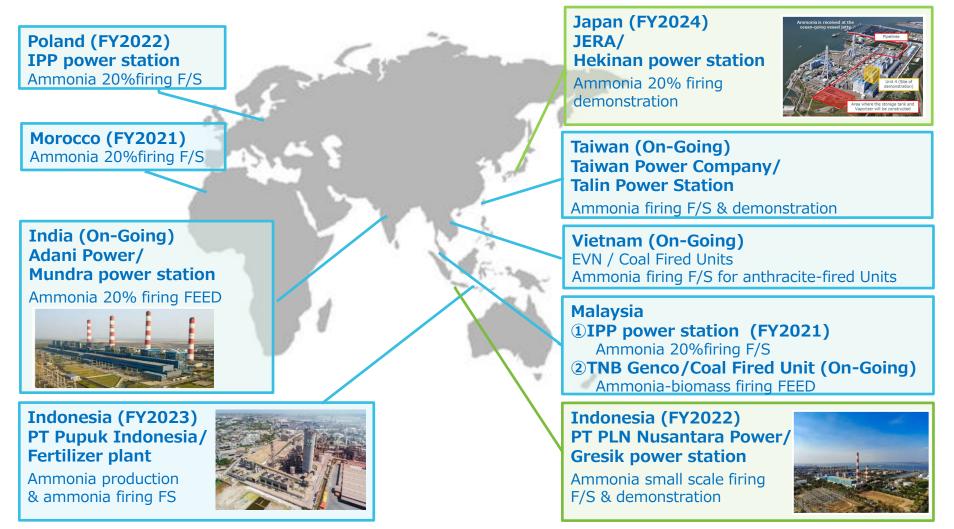
IHI 🛞

IHI is promoting on the feasibility of the green ammonia production projects.



Wide range of ammonia utilization technologies currently in development

Field	Items		Description	Status	
Power	Boiler		Developing ammonia combustion technologies for thermal power plants	Demonstration of 20% ammonia combustion at JERA's Hekinan Thermal Power Station #4 from <u>Apr 2024 - successfully completed</u> Jun 2024	
	Large Gas Turbines	9F.04 : Source : GE Vernova	IHI and GE entered into joint development agreement to apply IHI's 100% ammonia combustion technology to GE's gas turbines (6F.03,7F and 9F)	Joint development targeting 2030	
Maritime	Recip. Engine		Developing reciprocating engines for vessels with ammonia-fueled engine	Successfully started the Engine plant demonstration (10% diesel, 90% ammonia) <u>April 2024</u> , ship to be completed by: - Ammonia-Fueled Tugboat <u>Aug 2024</u> - Ammonia-Fueled Medium Gas Carrier <u>Nov 2026</u>	
			To be used as a means for both maritime and onshore applications	Diesel engine (maritime) to be commercialized in <u>2027,</u> gas engine (onshore) in <u>2028</u>	
Industry	Small Gas Turbine		World's first 100% ammonia combusted gas turbines to achieve CO ₂ free power generation	Durability test from <u>May 2024</u> <u>to 2025,</u> to be commercialized in <u>2026</u>	
	Furnace	ion All Rights Reserve	IHI to convert existing fuel for various industrial furnaces (naphtha cracking furnace etc.) to ammonia fuel	Ammonia single-fuel burners demonstrated at naphtha cracking furnace, Idemitsu Kosan Co.,Ltd in <u>Feb 2024</u>	

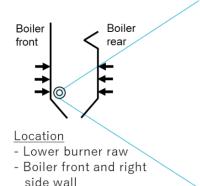

Stepwise increase of co-combustion ratio toward zero CO₂ emissions

Fuel Ammonia Firing at Boilers

IHI has many experiences in ammonia fuel conversion FS/FEED/Demonstration for coal fired boilers around the world.

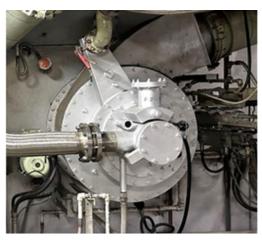
Some mutual discussions are on going in Central and South America and East Asia, etc.

2024 IHI and JERA Complete Fuel Ammonia Substitution Demonstration Testing at Hekinan Thermal Power Station


IHI and JERA Complete Fuel Ammonia Substitution Demonstration Testing at Hekinan Thermal Power Station | 2024FY | News Articles

This effort has yielded favorable environmental outcomes.

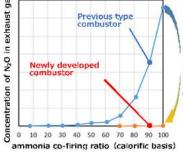
- \checkmark CO₂ emissions at the unit have fallen around 20%.
- ✓ NOx emissions are almost equal before ammonia substitution.
- \checkmark SO₂ emissions are down about 20%.
- ✓ Emissions of powerful greenhouse gas N₂O have been undetectable.

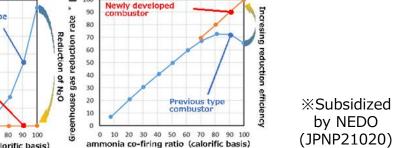

JERA's Hekinan Thermal Power Station (cited from JERA's homepage)

Conventional fuel flame

20% Ammonia flame

Test burner


Subsidized by NEDO (JPNP16002)


Ammonia Fueled Gas Turbine

2022 CO₂-free power generation achieved with the world's first gas turbine using 100% liquid ammonia –Reduction of over 99% greenhouse gases during combustion–

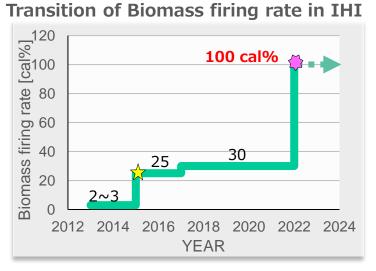
https://www.ihi.co.jp/en/all_news/2022/resources_energy_environment/1197938_3488.html

2026

IHI, Gentari sign MoU to develop global green ammonia value chain and commercial demonstration of ammonia-powered gas turbine

https://www.ihi.co.jp/en/all_news/2023/resources_energy_environment/1200488_3523.html

GE Vernova and IHI move to the next phase of the technology roadmap aiming to develop a 100% ammonia capable gas turbine combustion system by 2030


Copyright © 2024 IHI Corporation All Rights Reserved.

https://www.ihi.co.jp/en/all_news/2023/resources_energy_environment/1200574_3523.html

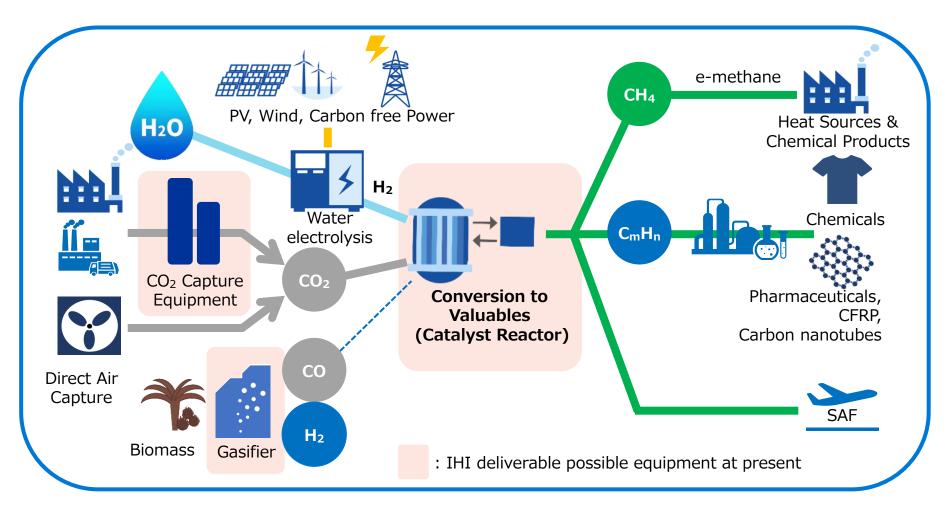
Biomass Power in Japan

CO₂-free power generation achieved for biomass firing

- \checkmark Modification for existing coal firing boiler / Newly construction
- ✓ Various firing rate
- ✓ Achieved for biomass firing with modification from coal firing

Project	Many Ref.	Α	В	С	D
Biomass firing Rate	2~3 cal%	15 cal%	30 / 42 cal%	100 cal%	95 cal% with assist gas
Output	-	500 MW	149 MW	112 MW	200 MW
Fuel	Coal, Wood Chips, Wood Pellet	Coal, Wood Pellet	Coal, Wood Pellet, Wood Chips	Wood Pellet	Wood Pellet
Year	2005~Current	2020	2015 / 2023	2022	2023

Development of Carbon Recycle Technologies


~Efforts in industries where carbon neutrality through fuel conversion is difficult~

- ✓ IHI's solution
- ✓ Scale up of methanation process
- ✓ Application of carbon recycle technologies

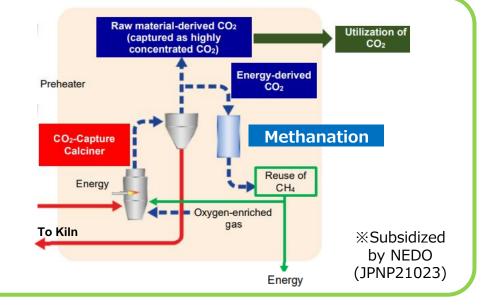
IHI's Solution of Carbon Recycling

- ✓ IHI will provide carbon recycling technology to customers who carbon neutrality through fuel conversion is difficult.
- Carbon recycling technologies is to supply hydrocarbon-based fuel, chemicals and raw materials, not fossil fuel.

Scale up of Methanation Process

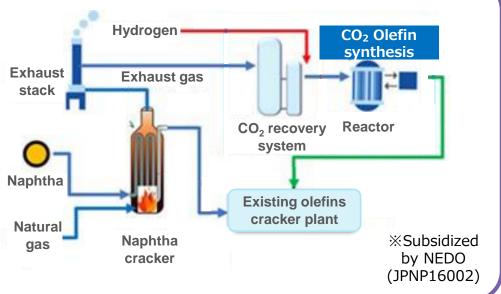
	Near LNG shipping terminal				
	On-site	Started considering large-			
Bench	500Nm ³ /h	scale methanation plants for overseas from FY2021.			
Lab				Mid-scale	Large-scale
	Bench	Demo		Several hundreds	Tens of thousands
e-methane Lab production volume ~0.05	~1.2	~12			
(Nm³/h) ~2018	2019	2020			2030

Fully commercialized in October 2022	Customer	Planned delivery location	e-methane production volume at demo	Reference approx. required volume of CO2
	Soma IHI Green Energy Center	Soma City, Fukushima Pref.	12.5Nm³/h	Approx. 0.6Ton/day
The thread of the second secon	AA	Aichi Pref.	5Nm³/h	Approx. 0.24Ton/day
	вВ	Yamaguchi Pref.	12.5Nm³/h	Approx. 0.6Ton/day
	СС	Aichi Pref.	2Nm³/h	Approx. 0.1Ton/day


*SIGC: Soma IHI Green Energy Center

Application of Carbon Recycle Technologies

Cement Industries


- ✓ Methanation of CO₂ from CO₂-capture type calciner
- ✓ Pretreatment process of CO₂ for methanation
- ✓ Use e-methane for energy in the process in the future

Petrochemical Industries

- ✓ CO₂ capture from exhaust gas of naphtha cracker
- ✓ Olefin synthesis using by-product H₂ generated from other processes
- ✓ Mix olefin synthesis gas into existing process

IHI to Conduct Proof-of-Concept Tests at Thai Petrochemicals Plant for Sustainable Lower Olefin Synthesis Technology from CO₂ as Feedstock | 2023FY | News Articles | IHI Corporation

Concluding Comments

- With IHI's carbon solution technologies such as fuel ammonia, biomass and carbon recycle technologies, IHI will promote R&D and social implementation toward the realization of a carbon neutral society by 2050.
- In order to achieve carbon neutral society, we strongly request support from the government for the social implementation and their subsequent dissemination.
- ✓ IHI is firmly committed to tackling the social challenge towards the realization of carbon neutral society in 2050 through the power of our technology.

